Explore as questões disponíveis e prepare-se para seus estudos!
Em uma pequena clínica hospitalar, a receita diária R e a despesa diária D, ambas em R$ mil, são variáveis aleatórias contínuas, tais que:
P(R ≤ r) = 1 e 0,2r , para r ≥ 0; e P(R ≤ r) = 0, para r < 0; e
P(D ≤ d) = 1 e 0,25d , para d ≥ 0; e P(D ≤ d) = 0, para d < 0.
Considerando que a covariância entre as variáveis R e D seja igual a 10, e que S = R D seja o saldo diário, julgue o item a seguir.
A probabilidade de o saldo S ser nulo é igual a 0.
Julgue o item a seguir, considerando o par de variáveis aleatórias contínuas (U,V), cuja função de densidade conjunta é dada por f(u,v) = 12/11 (u2 + uv + v2), em que c é uma constante positiva, 0 < u < 1 e 0 < v < 1, e u e v representam, respectivamente, os suportes de U e V.
Os valores esperados de U e de V são iguais a 7/11.
Considere que Y seja uma variável aleatória geométrica que representa o número de erros cometidos por um atendente no preenchimento de formulários e que a função de probabilidade de Y seja definida por P(Y = k) = 0,9 × (0,1)k , em que k = 0, 1, 2, ... A partir dessas informações, julgue o item que se segue.
A distribuição Y é amodal.
O tempo, em horas, necessário para que estudantes do nono ano cheguem ao Campus Realengo II do Colégio Pedro II, é uma variável aleatória com desvio padrão igual a 42 minutos. Para realização de um estudo sobre esses estudantes, coletou-se uma amostra de 36 indivíduos.
A probabilidade de que o erro, ao realizar a estimação pontual para a média pelo método dos momentos, não ultrapasse 15 minutos, é de
Julgue o seguinte item, em relação à distribuição normal.
Em uma distribuição normal, sendo Z uma variável aleatória contínua, se a probabilidade P(0 < Z < 2,00) = 0,4772, então P(Z > -2,00) = 0,8544.