Explore as questões disponíveis e prepare-se para seus estudos!
Considerando-se, no espaço R3 , os pontos A = (1, 2, 1), B = (2, 0, 2), C = (4, k, 4) e o plano α de equação x – 2y + 2z + 4 = 0, é correto afirmar:
Se a base de um cone circular, de raio 3u.c., está contida no plano α e o vértice do cone é o ponto A,
então o seu volume é 3π u.v..
Considerando as transformações lineares P: R3 → R2 e T: R2 → R3 , dadas, respectivamente, por P(x, y, z) = (x, y) e T(x, y) = (x, y, x + y), e considerando, ainda, que as matrizes associadas às transformações P e T nas bases canônicas sejam indicadas, respectivamente, por P e T, julgue o item que se segue.
A imagem da transformação T é um subespaço vetorial de R3
com dimensão 2.