Explore as questões disponíveis e prepare-se para seus estudos!
O tempo de espera, em horas, entre sucessivas falhas de uma bomba d'agua, é uma variável aleatória contínua com função de distribuição acumulada fornecida abaixo.
Determine o valor da constante sabendo que .
Uma variável aleatória X tem função de distribuição acumulada dada por:
A probabilidade P[ 1,2 ≤ X < 3 ] é igual a
Uma variável aleatória contínua X tem função de distribuição acumulada dada por:
A mediana de X é igual a
O responsável pelo planejamento de uma pesquisa acredita que, a priori, a probabilidade de que um indivíduo tenha uma determinada opinião, positiva, é de 80%. Para avaliar melhor essa crença, o responsável realiza um experimento no qual a opinião é positiva em 40% dos casos, quando o responsável julga a priori que não será assim; sendo positiva em 70% dos casos, quando ele prevê uma opinião positiva. No experimento, a opinião se mostrou positiva (ExpPos).
Portanto, a distribuição a posteriori, ou seja, após a realização do experimento, para a crença do responsável depois do experimento é:
Seja FX a função de distribuição cumulativa da variável aleatória X e FY a função de distribuição cumulativa da variável aleatória Y. Sobre as propriedades da função de distribuição cumulativa, analise as afirmativas a seguir.
I. FX é contínua à direita.
II. FX é não decrescente, isto é, FX(a) ≤ FX(b) sempre que a < b, ∀ a,b, ∈ |R.
III. limx→ – ∞ FX (x) = 0 e limx→ ∞ FX (x) = 1.
IV. Se g(x) = y, então FY(y) = FX(g–1 (y)).
Estão corretas as afirmativas