Explore as questões disponíveis e prepare-se para seus estudos!
Supondo que o número de documentos com erros processuais em uma amostra aleatória de 1.000 documentos seja uma variável aleatória binomial, denotada por X, com parâmetros n = 1.000 e probabilidade de sucesso 0,01, julgue o item a seguir.
Cada elemento que constitui essa amostra aleatória de documentos pode ser descrito por uma distribuição de Bernoulli cuja média é igual a 0,01.
As variáveis aleatórias X e Y seguem uma distribuição de Bernoulli com probabilidade de sucesso igual a 0,4. Considerando S = X + Y e que os eventos aleatórios A = [X = 1] e B = [Y = 1] sejam mutuamente exclusivos, julgue o item subsequente.
P([X = 0] ∩ [Y = 0]) < 0,1.
Considere uma cadeia de Markov com a seguinte matriz de transição:
P =
A distribuição limite desta cadeia, quando o número de transições de estado tende a infinito, é
As variáveis aleatórias X e Y seguem uma distribuição de Bernoulli com probabilidade de sucesso igual a 0,4. Considerando S = X + Y e que os eventos aleatórios A = [X = 1] e B = [Y = 1] sejam mutuamente exclusivos, julgue o item subsequente.
O desvio padrão da soma S é igual a 0,4.